Skip to contents

All functions

GENIE_maf_schema
GENIE_maf_schema: GENIE_maf_schema: schema for TCGA maf file to process the mutations
TCGA_maf_schema
TCGA_maf_schema: schema for TCGA maf file to process the mutations
add()
Compute weight overlap stats
al.pairwise.alteration.stats()
Compute weight overlap stats
al.stats()
Create an alteration stats object
am.pairwise.alteration.coverage()
Compute weight overlap stats
am.pairwise.alteration.overlap()
Compute overlap stats
am.stats()
Create an alteration matrix stats object
am.weight.pairwise.alteration.overlap()
Compute weight overlap stats
binary.yule()
Compute yule coefficent
effectSize()
Compute weight overlap stats
estimateFDR2()
Compute FDR
estimate_p_val()
Compute pairwise p-value
estimate_pairwise_p()
Compute pairwise p-value
filter_maf_column()
Filter maf function
filter_maf_complex()
This function filters a MAF dataframe by retaining only the rows with a combination of values compatible with the values
filter_maf_gene.name()
This function filters a MAF dataframe by sample id
filter_maf_ignore()
This function filters a MAF dataframe by retaining (or discarding) ignore mutations
filter_maf_missense()
This function filters a MAF dataframe by retaining (or discarding) missense mutations
filter_maf_mutation.type()
This function filters a MAF dataframe by sample id
filter_maf_mutations()
This function filters a MAF dataframe by sample id
filter_maf_sample()
This function filters a MAF dataframe by sample id
filter_maf_schema()
This function filters a MAF dataframe by sample id
filter_maf_truncating()
This function filters a MAF dataframe by retaining (or discarding) truncating mutations
generateS()
Generate S matrix
generateW_block()
Generating the weight matrix taking sample covariate
generateW_mean_tmb()
Generating the weight matrix
get.blocks()
Get sample/alteration blocks
interaction.table()
Compute weight overlap stats
luad_maf
Lung adenocarcinoma MAF from TCGA cohort
luad_result
Lung adenocarcinoma from TCGA cohort as selectX run results
luad_run_data
Lung adenocarcinoma from TCGA cohort as selectX run object
maf2gam()
Generate gam from the maf file
mutation_type
Mutation list object
new.AL.general()
Create an AL object
new.ALS()
Create an alteration landscape object
new.AMS()
Create an alteration matrix stats object
null_model_parallel()
Generating the null_simulation matrix
null_model_parallel_debug()
Generating the null_simulation matrix
obs_exp_scatter()
Create an AL object
oncokb_genes
OncoKB v3.9 cancer genes
oncokb_truncating_genes
OncoKB v3.9 cancer genes consider for truncating mutations
overlap_pair_extract()
Extract the backgroun distribution
r.am.pairwise.alteration.overlap()
Compute weight overlap stats
r.effectSize()
Compute weight overlap stats
retrieveOutliers()
Removing the Outliers
ridge_plot_ed()
Generate a pairs background plot
ridge_plot_ed_compare()
Generate a pairs background plot for two dataset comaprision
selectX()
SelectX main function to create alteration object with background model
selectX_debug()
SelectX main function to create alteration object with background model
stat_maf_column()
Summary functions for MAF file
stat_maf_gene()
Summary functions for MAF file
stat_maf_sample()
Summary functions for MAF file
templeate.obj.gen()
Generating the template matrix
variant_catalogue
OncoKB v3.9 cancer genes
w.r.am.pairwise.alteration.overlap()
Compute weight overlap stats